The role of memory in shaping migratory behavior

Jerod A. Merkle, Hall Sawyer, and Matt Kauffman

Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming Western Ecosystems Technology, Inc. U.S. Geological Survey

0 510 20 30 40 Kilometers

Why animals migrate

- Attraction to fitness enhancing locations
 - Increase energy intake
 - Mate finding
- Avoiding areas with unfavorable conditions
 - Energy expenditure (hot, cold, buggy places)
 - Competition
 - Predation

Avgar et al. 2013 (Review in CJZ)

Migration can be spectacular

Egevang et al. 2009 (PNAS)

How do they migrate?

1. Tracking resource and environmental gradients

2. Employing memory capabilities

Forage Maturation and Green-Wave Hypotheses

(Fryxell 1991 Am Nat; Hebblewhite et al. 2008, Ecol Monogr)

Spatial and attribute memory

- Jays and Caching
 - Can remember location, content, and time of caching

Clayton et al. 2001 (Phil Trans Royal Soc)

Variable	Tracking	Memory
----------	----------	--------

Variable	Tracking	Memory
Green-wave surfing	Yes	Perhaps

Variable	Tracking	Memory
Green-wave surfing	Yes	Perhaps
Movement bias towards previous year's summer range	No	Yes

Variable	Tracking	Memory
Green-wave surfing	Yes	Perhaps
Movement bias towards previous year's summer range	No	Yes
Movement bias towards previous year's route	No	Yes

Variable	Tracking	Memory
Green-wave surfing	Yes	Perhaps
Movement bias towards previous year's summer range	No	Yes
Movement bias towards previous year's route	No	Yes
Migratory route changes over time	Yes	No

Mule deer -Red Desert to Hoback migration

n = 13 animal-years

Up to approx. 240 km migration

Step Selection Function during migration

- Base model:
 - Elevation, slope, aspect, % cover, distance to road, terrain position index, integrated NDVI
- Tracking hypothesis
 - Instantaneous rate of green-up (IRG)
- Memory hypothesis:
 - Bias towards previous summer range
 - Bias towards previous migration route

Normalized Difference Vegetation Index (NDVI)

NDVI

• Spatial and temporal measure of greeness

(Pettorelli et al. 2005, TREE; Bischof et al. 2012, Am Nat)

IRG as intermediate forage biomass

(Pettorelli et al. 2005, TREE; Bischof et al. 2012, Am Nat)

Variable	Tracking	Memory
Green-wave surfing	Yes 🔪	Perhaps
Movement bias towards previous year's summer range	No	Yes
Movement bias towards previous year's route	No	Yes
Migratory route changes over time	Yes	No

Variable	Tracking	Memory	
Green-wave surfing	Yes	Perhaps	
Movement bias towards previous year's summer range	No	Yes	
Movement bias towards previous year's route	No	Yes	
Migratory route changes over time	Yes	No	

Does the route change over time?

AID 17 2011

~ 240 km migration

High fidelity to previous route

~ 240 km migration

High fidelity to previous route

~ 240 km migration

Variable	Tracking	Memory	
Green-wave surfing	Yes 🔪	Perhaps	
Movement bias towards previous year's summer range	No	Yes	
Movement bias towards previous year's route	No	Yes	
Migratory route changes over time	Yes	No	

The use of attribute memory

- Is the use of memory stronger when past experience was good?
 - Expectation: Selection of previous route strengthens with better surfing the previous year

Previous year's surfing score based on 3-day running mean

 $\Delta QIC = 8.6$

ΔQIC = 8.6

Take home messages

- Deer have excellent spatial memory
- Memory is the driver of migratory behavior, green-wave surfing is secondary
- Adjustable memory use may result in adaptation to change

Habitat is... environment 💸 animal's knowledge

Funding and Partners

• USDA NIFA postdoc fellowship (grant award # 2014-01928)

United States Department of Agriculture

National Institute of Food and Agriculture

UNIVERSITY of Wyoming

New Thinking

jmerkle@uwyo.edu

Thank you!