

Karner Blue Butterfly Conservation in NH

Historic and potential recovery areas of the Karner blue butterfly

Concord, NH is the only place in New England where the Karner blue can be found.

Federal Recovery Goal

processes to increase habitat

US Fish and Wildlife Service, Roger Williams Park Zoo, NH Fish and Game, Albany Pine Bush Preserve Commission

The Detroit Zoo, The Toledo Zoo, The Nature Conservancy.....

Successful Reintroduction Requires

- Habitat Quality
- Overcoming Allee Effect
- Fitness

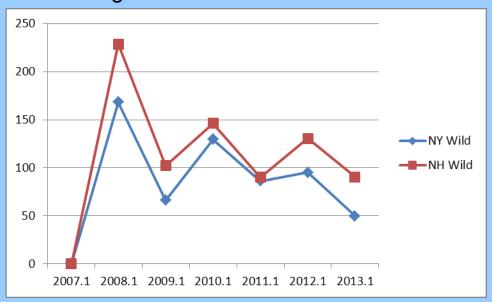
Problems with Captive Breeding for Species Recovery

- Self sufficiency of captive populations
- Poor success of reintroductions
- High Costs
- Preemption of Other Recovery Techniques
- Disease Outbreaks
- Maintain Admin. Continuity

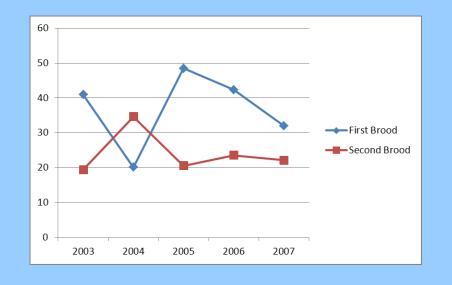
Year	Lupine	Nectar	Planting Hours	Captive Rearing Hours	Kids Camp
2006	-	-	-	1	-
2007	364	-	86	68.75	-
2008	261	-	66	49	173.5
2009	530	20	157	300.5	192
2010	440	180	135	159.5	na
2011	285	89	136	72	
2012	186		50		
2013	160		50		
	2226	289	680	649.75	365.5

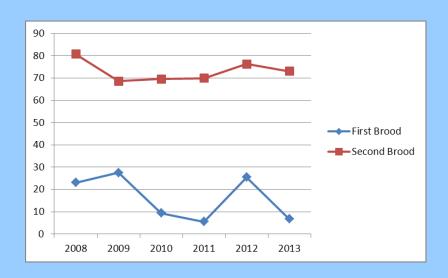
Numerous Partners are Necessary to Implement all Pieces to the Puzzle

Roger Williams Park Zoo and partners of the New England Conservation Collaborative


Kids For Karners

Over 4000 students and 2500 lupine plants from 2000-2014

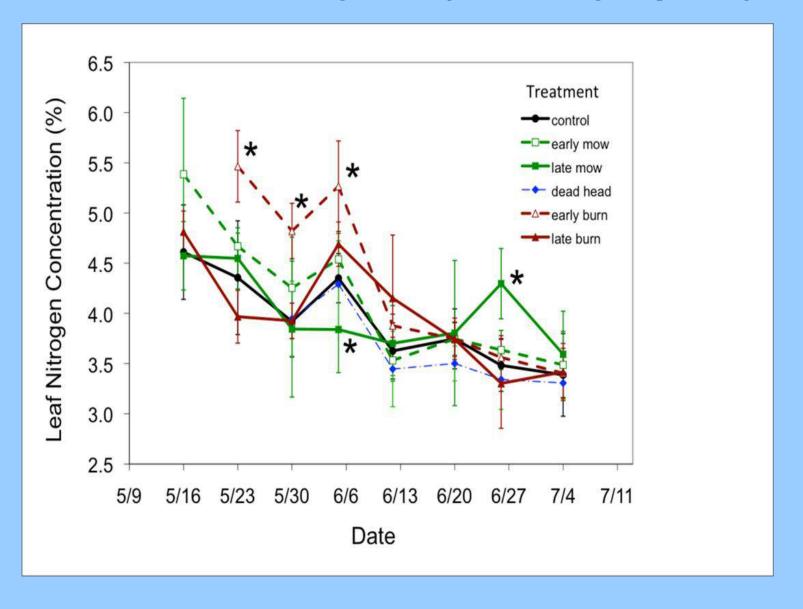

Assessing Traits relative to Founders

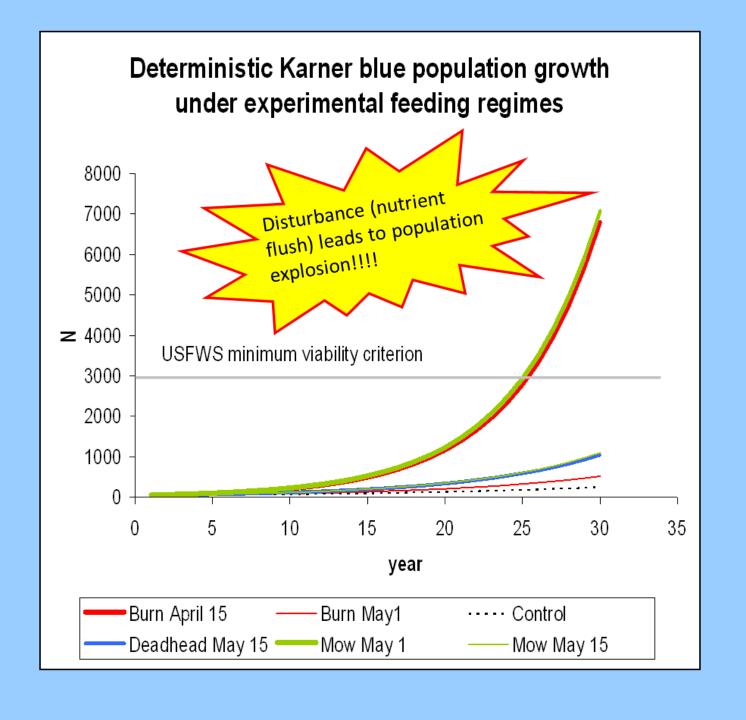


Instar	Average	NH 2011
	ŭ	1.13
First	1.9 - 3.5 mm	mm
Second	3.6 - 5.9 mm	4 mm
		7.25
Third	6.0 - 9.9 mm	mm
		11.2
Fourth	10 - 15 mm	mm

Observing for Morphological Change

Monitoring Infertility as a symptom for Inbreeding


Evaluating Impact of Captive Breeding


Life Stage	Fuller 2008	NH Lab
first brood hatch	0.12	0.35
first brood larval survival *	0.514	0.65
first brood female survival	0.207	-
first brood eggs per female+	40-64	131
second brood hatch	0.968	0.722
second brood larval survival	0.514	0.783
second brood female survival	0.207	<u> </u>
second brood eggs per female	40-64	37.72

^{*} Larval survival was separated into predation and parasitism by Fuller

⁺Eggs per female was based on 5-8 eggs per day per female in Fuller

Kbb larval feeding study – Forage quality

				Avg.					Avg.			% Third
	Date	Larval	Avg.	Temp	Max.	Min.	Date	Avg.	Temp	Max.	Min.	Brood
Year	Larvae	Days	Temp*	(Celsius)	Temp	Temp	Adults	Temp ¹	(Celsius)	Temp	Temp	Hatch
2005	13-Jun	32	74.02	23.34	96.26	59.42	14-Jul	78.55	25.86	93.97	68.33	<1%
2006	15-Jun	23	75.37	24.09	85.83	62.17	7-Jul	77.64	25.36	100.98	61.48	<1%
2007	10-Jun	27	72.99	22.77	89.48	58.73	6-Jul	73.16	22.87	54.38	64.91	<1%
2008	8-Jun	26	72.51	22.5	89.48	65.59	3-Jul	76.42	24.68	91.71	76.42	4.30%
2009	5-Jun	32	67.97	19.98	82.95	58.73	6-Jul	70.4	21.33	82.95	59.42	6.70%
2010	21-May	29	na	na	na	na	19-Jun	na	na	na	na	11.00%
2011	12-Jun	28	68.85	20.47	75.22	62.17	9-Jul	70.669	21.48	78.71	65.59	0%
2012	26-May	26	73.12	22.85	93.21	67.65	20-Jun	79.04	26.13	93.97	69.02	8.05%
2013	15-Jun	24	68.84	20.47	87.28	58.73	6-Jul	72.27	22.37	80.82	66.96	<1%

^{*}Temperatures Measured from first larvae hatched to first adult eclosed

¹Temperatures Measured from first adult eclose + 20days

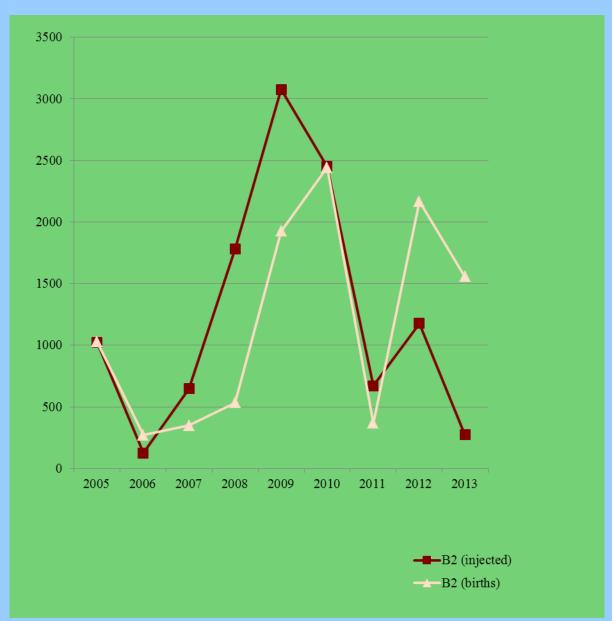
UPPER MIDWEST TRENDS

Michigan

- Huron-Manistee National Forest
 - Karnersdown 736 from 2011 to 2012.
 - Down another 28% from 2012 to 2013.
 - Overall, populations dropped 81% from 2011 to 2013
- Michigan State Forests
 - Declining populations from a raw count of 1117 in 2009 to 32 in 2013
 - Down by 97% from 2009

Indiana Dunes

- Declining population from a raw count of 779 in 1999 to 0 in 2013 Extirpated
- Other Indiana small sites are down from 2011 with a possible extirpation at one
 of the three sites


Minnesota

- Remnant populations. None seen since 2010.
- Extirpated

Wisconsin

- Down 24% from 2011 to 2012 (38650 to 29,400)
- Down 40% from 2012 to 2013 (29,400 to 17650)
- Down 54% from 2011 to 2013 (38,650 to 17,650)

Karner Blue Butterfly Population

New Hampshire population continues to show positive response to habitat management and augmentation

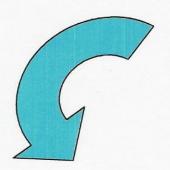
The agencies and organizations who assist on the Karner Blue Butterfly Restoration Project, in addition to the NH Fish and Game Department (NHFG) and the US Fish and Wildlife Service (USFWS), include NH Army National Guard (NHANG), Concord Municipal Airport, Natural Heritage Inventory (DRED), Forest and Lands (DRED), National Wildlife Federation (NWF), Wildlife Heritage Foundation, Praxair Foundation, Roger Williams Park Zoo, and Concord Schools Project SEE

Inbreeding Symptoms

Percent infertile eggs increases Adults will be smaller Reluctant to pair Death in final instars

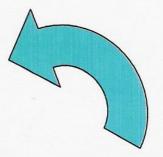
After 6 generations you can expect problems, best way to maintain strong gene pool is to add wild stock throughout the year

From "The Commercial Butterfly Breeders Manual" (Venters, Rogers and Chesterfield 2001)

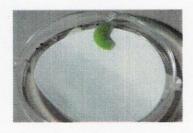

Pros

- · Greater control over climate
- Protection from predators and parasites
- Observation and control of cause and effect
- Better control of selective breeding
- Ova laid in smaller area

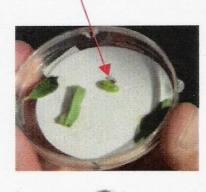
Cons

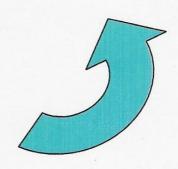

- Time consuming
- Increased risk of disease
- Increased work in providing and changing cut foodplant
- Less efficient use of foodplant
- Smaller less robust adults on cut foodplant
- Usually delays egg laying
- Larger percentage of ova laid in unnatural places causing them to dry out or be subject to fungal attack

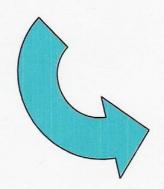
Karner Blue Butterfly Life Cycle



Egg



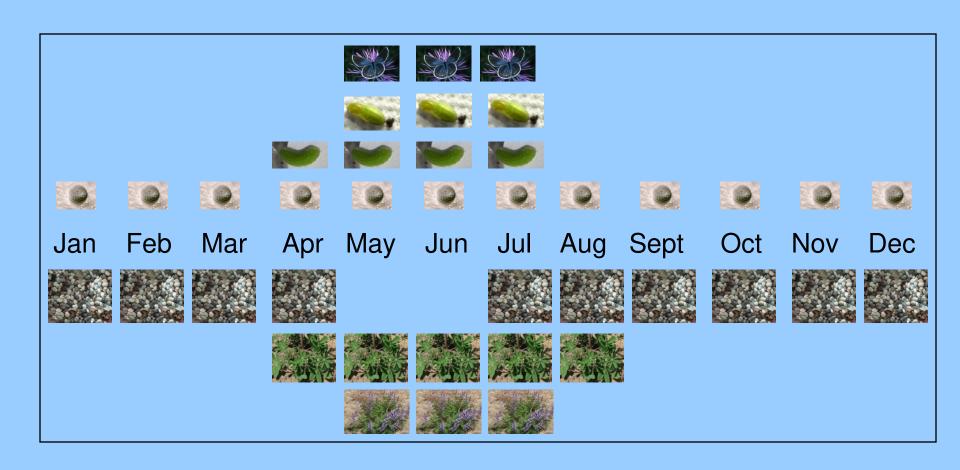


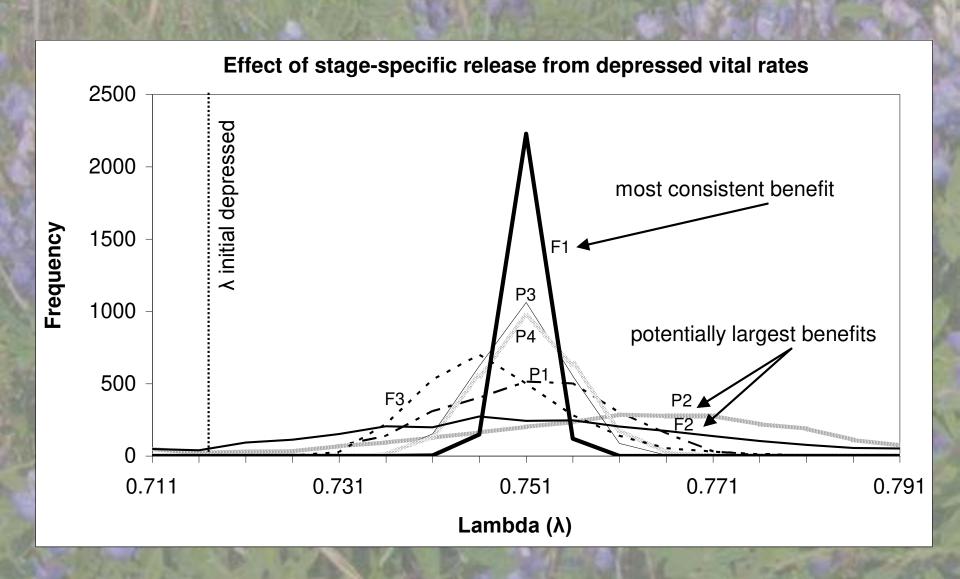

Larvae 18-21 days 4 instars

Pupae 10 days

Adult
1 week
(flight is about 3 weeks)

Adults lay eggs on or around wild lupine


Karner Blue Butterfly Larvae


Note the hairs on the larvae and lupine leaf

INCUBATOR FEATURES

Chamber Performance

Temperature Range: 18°C to 32°C Temperature Control: ±0.2°C

Temperature Sensor: Type T Thermocouple

Cooling System:

Solid State

Humidity System: Ultrasonic (optional) Lighting: Programmable LED

(optional)

Controls

- · Microprocessor PID controls
- · Audible/visible alarms
- · Remote alarm contacts

Cabinet Construction

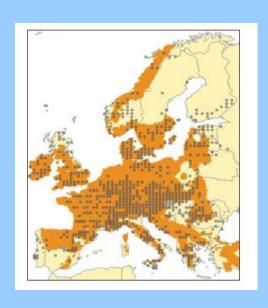
- · High density urethane insulation
- · Double-pane thermal glass door
- · Non-chip vinyl laminated steel exterior
- · White NSF-approved aluminum interior
- · 300 series stainless steel floor
- · Low wall plenum
- · 4" casters

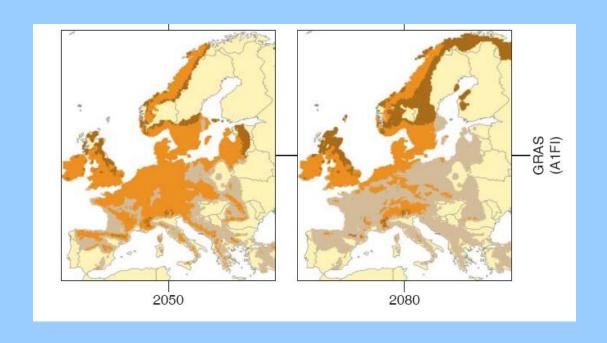
A variety of factors determine impact on a particular species.

Table 1 Characteristics of insects likely to be high *vs.* low risk from global change, including land-use change, climate change and invasive species.

High risk	Lower risk
Small population size	Large population size
Narrow geographic range	Large geographic range
Widely fluctuating population size (exogenous population dynamics)	Regulated or stable population size (endogenous population dynamics)
Resource/habitat specialisation	Resource/habitat generalist
Narrow environmental tolerances (e.g. thermal tolerance)	Broad environmental tolerances and adaptive strategies for avoiding harsh conditions
High trophic position (e.g. parasitoid)	Basal tropic position (<i>e.g.</i> scavenger or plant-feeder)
Limited dispersal ability (<i>e.g.</i> wingless or small body size with limited flight distance)	High dispersal ability (e.g. winged with large flight muscles)
Involved in mutualism	Not dependent on mutualistic association with other organisms
Example: a small-bodied, specialised	Example: strong-flying butterfly that
parasitoid with a small geographic distribution	feeds on a number of abundant host plants and inhabits an entire continent

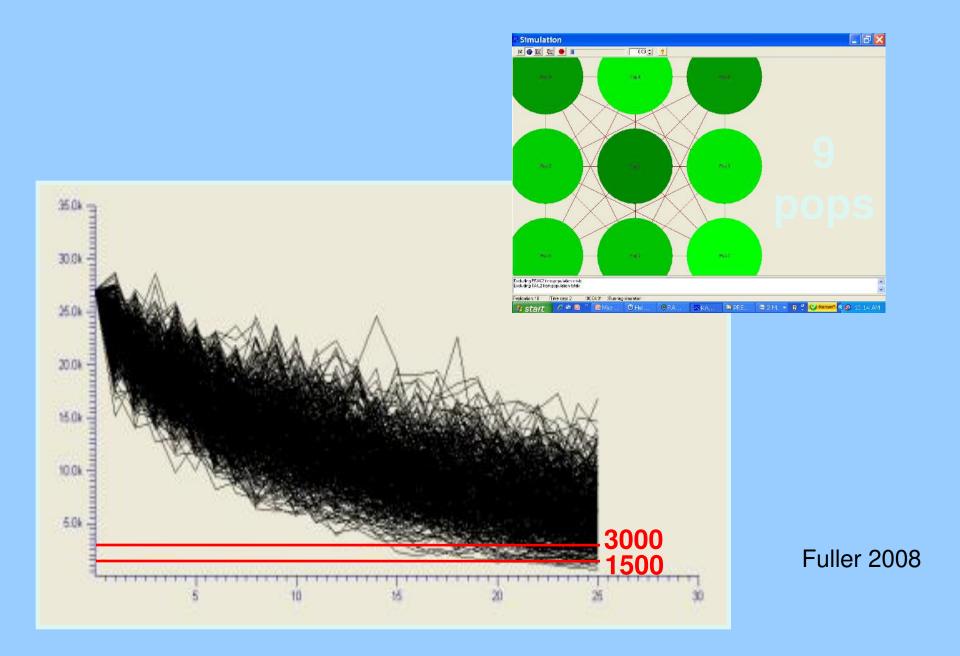
Cupido minimus (Fuessly, 1775) - Small Blue


@ A	lbert	V	liege	nti	nart


		Full dispersal	No dispersal
	SEDG	-2124 (-15.81%)	-3032 (-22.56%)
2050	BAMBU	-2256 (-16.79%)	-3275 (-24.37%)
	GRAS	-3245 (-24.15%)	-4134 (-30.77%)
	SEDG	-4157 (-30.94%)	-5451 (-40.57%)
2080	BAMBU	-4491 (-33.42%)	-6672 (-49.65%)
10.70	GRAS	-6299 (-46.88%)	-8702 (-64.76%)

Changes in climatic niche distribution (in 10'×10' grid cells; present niche space: 13437)

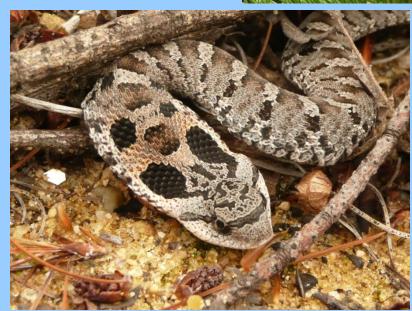
- Large population size
- •Large geographic range
- •1-2 generations per year
- Single host plant on specific soils
- Less environmental tolerance

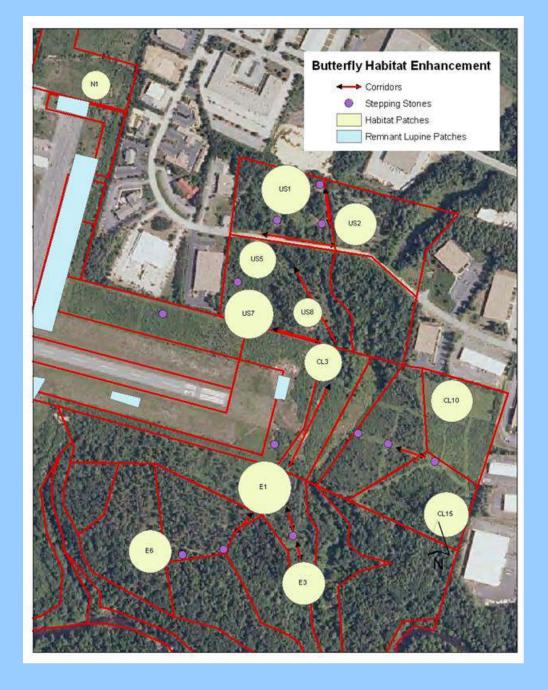

Species #2 - Estimated Range Shift

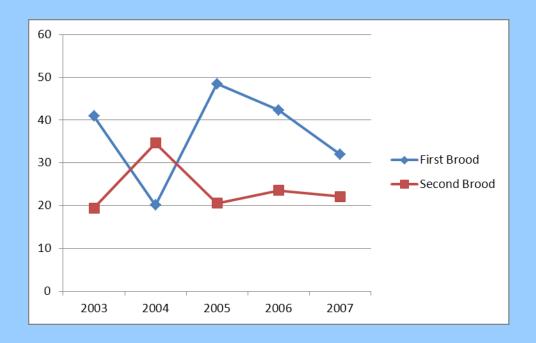
A good snow cover is essential to Karner blue egg survival

Birds and Reptiles

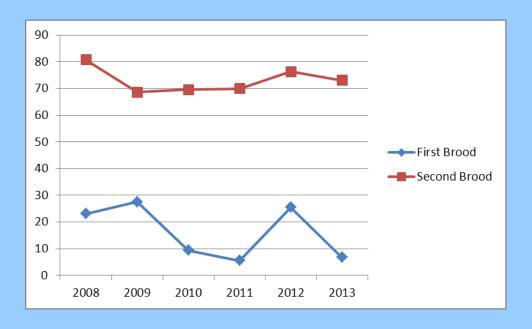
Whip-poor-will

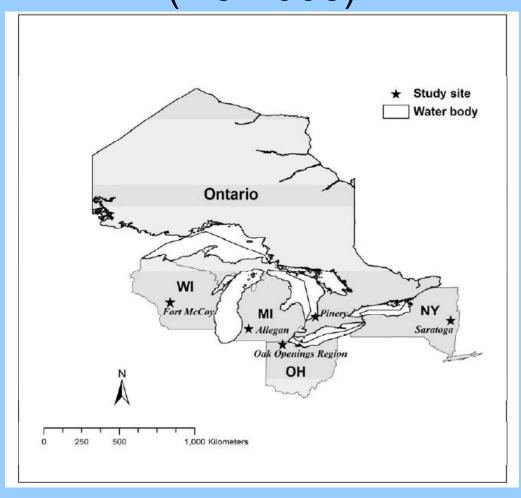

Prairie Warbler




Eastern Hognose

Grasshopper Sparrow





Hatch Success

Environmental change in former and present Karner blue butterfly habitats.

(Liu 2008)

Variables Analyzed

Table 3. Time periods used in the analyses of the climatic indices.

Climatic Indices	Description	Time 1	Time 2
SDII	Simple daily intensity index	1961-1983	1984-2005
RR10	Number of heavy precipitation days	1962-1983	1984-2005
RR20	Number of very heavy precipitation	1962-1983	1984-2005
	days		
SnC	number of days with snow cover	1955-1983*	1984-2005*
ETR	Intra-annual extreme temperature	1968-1983	1984-2005
	range		
T×10	Number of cold days	1968-1983	1984-2005
T×90	Number of warm days	1968-1983	1984-2005
Tn10	Number of cold nights	1968-1983	1984-2005
Tn90	Number of warm nights	1968-1983	1984-2005
FD	Number of frost days	1968-1983	1984-2005
T×35GE	Number of extremely hot days	1968-1983	1984-2005
Tn-10LT	Number of severe cold days	1968-1983	1984-2005

^{*}Snow data are not available for Pinery, nor for Oak Openings Region for the period 1996-2005.

Results

Identified thermal tolerances

Identified precipitation limits

Large population size has advantage

 Duration of snow cover possible effect, more data is needed

The damage may have already begun.....

 "Extreme high temperatures and low rainfall may have had an impact in causing extinctions of the Karner blue butterfly at two locations in 1988".

(Liu 2008)

Captive rearing is restoring the Karner blue butterfly population

